



# **Oil Analysis Report [OLXX03]**

## **Demo Company - All Modules**

Site 1

Tag Number: PT4545

#### Wednesday, November 4, 2020

This report was prepared by TxMonitor® expressly for the customer as nominated on this page. Neither TxMonitor® nor any person acting in its behalf;

a) makes any warranty, express or implied, with respect to the use of any information or methods disclosed in this report, or
 b) assumes any liability with respect to the use of any information or methods disclosed in this report.

Any recipient of this document, by their acceptance or use of this document, releases TxMonitor® and their affiiates from any liability for direct, indirect, consequential or special loss or damage whether arising in contract, warranty, express or implied, tort or otherwise, and irrespective of fault, negligence and strict liability.

Email copies of this report are not official unless authenticated and signed by TxMonitor® and are not to be modified in any manner without the express written consent of TxMonitor®.

TxMonitor® is responsible for all information in the report except that provided by the customer. Data provided by the customer is clearly identified. In addition, information supplied by the customer can affect the validity of the results. If the test sample deviates from specified conditions and is to proceed to testing, the results may be compromised.

Historical results from other laborartories provided by our Clients are included for reference and diagnosis purposes.

Accredited for compliance with ISO/IEC 17025 - Testing

Sampled in accordance with ASTM D923 - Sampling Electrical Insulating Liquids.

1300 736 091 info@txmonitor.com www.txmonitor.com TxMonitor, Unit 2/15 Hector Street (West), Osborne Park, WA 6017

NEWCASTLE • BRISBANE • DARWIN • PERTH • HAMILTON



Fails – Results are outside the standard guidelines

|               | CN/L                      |
|---------------|---------------------------|
|               |                           |
| A member of M | NITOR<br>M Group Holdings |

Report No.: OLXX03

Date: 04/Nov/2020

**Oil Analysis Report** 

Client: Demo Company - All Modules

Asset Review (This section is not part of the scope of NATA accreditation)

[IEEE C57-104 (DGA): Alarm] [IEEE C57-106 (Oil Quality): Fair]

Title: Interpretation of Dissolved Gas Analysis as per IEEE C57-104.

This sample is classified as DGA Status 3. Hydrogen, Methane, Ethane, Ethylene and Acetylene levels are exceedingly elevated.

High concentrations of Hydrogen, with the addition of minor quantities of Ethane, Ethylene and Methane may indicate low energy partial discharges or possible stray gassing. Carbon Monoxide and Carbon Dioxide concentrations are low indicating no abnormal cellulose insulation degradation.

Title: Interpretation of Oil Quality Properties as per IEEE C57-106.

OQIN is acceptable.

Furanic Compounds level is low. Based on the classification provided by the FIST standard the Estimated life remaining in the paper is 66%.

Calculated DP is 496 which is considered to be an accelerated rate of aging.

Based on the classification provided by IEC 60296 Table 2 for Inhibitor content and the analysis results, this oil is classified as: (T) "Trace inhibited oil" < 0.08%.

Corrosive sulphur analysis was performed with the following results: ASTM1275B: Non Corrosive: 1a - Slight Tarnish Light Orange, almost the same as freshly polished strip

Particle count indicates a normal contamination level. This contamination level is good and is considered typical for transformers in service.

Power Factor (DDF) result at 25°C is within the recommended IEEE guidelines.

Power Factor (DDF) result at 100°C is within the recommended IEEE guidelines.

This unit is class as PCB-free - Containing less than 2ppm of PCB's

Degree of polymerisation is low. DP result is 350 which is considered to be an excessive rate of aging with a high risk of failure. Based on the classification provided by the FIST standard the Estimated life remaining in the paper is 40%.

All other Oil Quality properties are within the recommended guidelines.

| Assessment:         | Urgent                                              | Next Sampling Date: 01/Feb/2021  |
|---------------------|-----------------------------------------------------|----------------------------------|
| Approved By:        | Hayley Coulson<br>Oil Laboratory Manager            | Alas                             |
| essment Code Legend | hy/normal condition. The available data does not in | dicate an active fault mechanism |

As

Ac Caution: Alert condition. There is an indication of an active fault mechanism in its early stages of development. Urgent: Alarm condition. An active fault mechanism is highly likely and prompt attention to this asset is required. **Oil Analysis Report** 

Date: 04/Nov/2020

Client: Demo Company - All Modules

| NATA             |  |
|------------------|--|
| WORLD RECOGNISED |  |

| A member of NM Group Holdings | Report No.: OLXX03                         | Date: 04/Nov/2020 |                | Client: Demo Company - All Modules |                   |                | WORLD RECOGNISED |  |
|-------------------------------|--------------------------------------------|-------------------|----------------|------------------------------------|-------------------|----------------|------------------|--|
| nalysis Resu                  | ults (cont. on Page 5)                     |                   | Sample I       | dentification: La                  | test sample taken | by TxMonitor/N | lachinemonit     |  |
|                               |                                            | Sample Date       | 01/Nov/2020    | 24/Feb/2015                        | 23/Jan/2011       |                |                  |  |
|                               |                                            | Analysis Date     | 04/Nov/2020    | 28/Feb/2015                        | 27/Jan/2011       |                |                  |  |
|                               |                                            | Report Date       | 04/Nov/2020    | 04/Mar/2015                        | 03/Feb/2011       |                |                  |  |
|                               |                                            | Temp °C *         | 35             | 25                                 | 31                |                |                  |  |
|                               |                                            | Laboratory        | TxMonitor      | TxMonitor                          | TxMonitor         |                |                  |  |
|                               |                                            | Sample ID         | TX0003         | TX002                              | TX0001            |                |                  |  |
| Dissolved Gas                 | Analysis: ± denotes MU                     |                   |                |                                    |                   |                |                  |  |
| Method C - ppm                | n at an STP of 0°C and 760 torr            |                   |                |                                    |                   |                |                  |  |
| ASTM-D3612                    | Hydrogen (H <sub>2</sub> )                 | <b>PPM (±14)</b>  | 704            | 450                                | 350               |                |                  |  |
| ASTM-D3612                    | Methane (CH₄)                              | PPM (±13)         | 500            | 250                                | 174               |                |                  |  |
| ASTM-D3612                    | Ethvlene (C <sub>2</sub> H <sub>4</sub> )  | PPM (+15)         | 500            | 50                                 | 34                |                |                  |  |
| ASTM-D3612                    | Ethane (C <sub>2</sub> H <sub>4</sub> )    | PPM (+16)         | 500            | 65                                 | 40                |                |                  |  |
| ASTM-D3612                    | Acetylene (C <sub>2</sub> H <sub>2</sub> ) | PPM (+16)         | 25             | 25                                 | 5                 |                |                  |  |
| ASTM-D3612                    | Carbon Monoxide (CO)                       | PPM (+272)        | 99             | 501                                | 399               | _              |                  |  |
| ASTM-D3612                    | Carbon Dioxide (CO <sub>2</sub> )          | PPM (+1992)       | 990            | 600                                | 2490              | _              |                  |  |
| ASTM-D3612                    |                                            | PPM (+204)        | 600            | 200                                | 150               |                |                  |  |
| ASTM-D3612                    | Nitrogon (N.)                              | DDM (±1105)       | 12 850         | 548                                | 25                |                |                  |  |
|                               |                                            | PPM               | 2.328          | 1.340                              | 1.003             |                |                  |  |
|                               |                                            |                   | 2,020          | 1,010                              | 1,000             |                |                  |  |
| Oil Quality Tes               | sts: ± denotes MU                          |                   |                |                                    |                   |                |                  |  |
| ASTM-D974                     | Acidity                                    | maKOH/a (+0.01)   | 0.02           | 0.01                               | 0.01              |                |                  |  |
| ASTM-D1500                    | Colour                                     | -                 | <0.5           | <0.5                               | <0.5              |                |                  |  |
| ASTM-D1533                    | Water Content                              | PPM (±6)          | 7              | 5                                  | 6                 |                |                  |  |
| ASTM-D971                     | Interfacial Tension                        | mN/m (±6)         | 36             | 36                                 | 35                |                |                  |  |
| AS1767-2.1                    | Breakdown Voltage                          | Avg.kV (±13)      | 64             | 65                                 | 62                |                |                  |  |
| ASTM-D1524                    | Visual Examination                         | -                 | Clear & Bright | Clear & Bright                     | Clear & Bright    |                |                  |  |
| ASTM-D924                     | Power Factor @ 25°C*                       | % (±0.01)         | 0.02           | 0.01                               | 0.02              |                |                  |  |
| ASTM-D924                     | Power Factor @ 100°C*                      | % (±0.30)         | 1.40           | 1.20                               | 1.30              |                |                  |  |
|                               | OQIN                                       | -                 | 1500           | 1500                               | 1500              |                |                  |  |
|                               |                                            |                   |                |                                    |                   |                |                  |  |
| Furanic Compo                 | ounds: ± denotes MU                        |                   |                |                                    |                   |                |                  |  |
| ASTM-D5837                    | 5-HMF                                      | PPB (±10)         | 2              | 4                                  | 6                 |                |                  |  |
| ASTM-D5837                    | 2-FAL                                      | PPB (±13)         | 634            | 360                                | 482               |                |                  |  |
| ASTM-D5837                    | 2-FOL                                      | PPB (±7)          | <5             | <5                                 | <5                |                |                  |  |
| ASTM-D5837                    | 2-ACF                                      | PPB (±4)          | <8             | <8                                 | <8                |                |                  |  |
| ASTM-D5837                    | 5-M2F                                      | PPB (±5)          | <3             | <3                                 | 6                 |                |                  |  |
|                               | Calculated D.P.                            | -                 | 496            | 566                                | 530               |                |                  |  |
|                               | Calculated Remaining Life                  | %                 | 66             | 75                                 | 70                |                |                  |  |

Signatory:



TxMONITOR® - FIRST IN INDEPENDENT TRANSFORMER MANAGEMENT Unit 2, 15 Hector Street (West), Osborne Park, WA, 6916. Tel: 1300 819 454

TXMONITOR

X TXMONITOR

Report No.: OLXX03

Date: 04/Nov/2020

Client: Demo Company - All Modules



| ts (cont.)           | Sample Identification: Latest sample taken by TxMonitor/Machinemonito |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Sample Date                                                           | 01/Nov/2020                                                                                                                                                                                                                                                                                                                                                                                               | 24/Feb/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23/Jan/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Analysis Date                                                         | 04/Nov/2020                                                                                                                                                                                                                                                                                                                                                                                               | 28/Feb/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27/Jan/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Report Date                                                           | 04/Nov/2020                                                                                                                                                                                                                                                                                                                                                                                               | 04/Mar/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 03/Feb/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Temp °C *                                                             | 35                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Laboratory                                                            | TxMonitor                                                                                                                                                                                                                                                                                                                                                                                                 | TxMonitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TxMonitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Sample ID                                                             | TX0003                                                                                                                                                                                                                                                                                                                                                                                                    | TX002                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TX0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ± denotes MU         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Paper D.P.*^         | -                                                                     | 350                                                                                                                                                                                                                                                                                                                                                                                                       | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PCB*                 | PPM (±1)                                                              | <1                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Specific Gravity*    | g/ml                                                                  | 0.89                                                                                                                                                                                                                                                                                                                                                                                                      | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Resistivity @ 25°C*  | Ω-cm (±6.5)                                                           | 16.00                                                                                                                                                                                                                                                                                                                                                                                                     | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Resistivity @ 100°C* | Ω-cm (±7.5)                                                           | 20.00                                                                                                                                                                                                                                                                                                                                                                                                     | 18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DBPC*^               | %w/w (±0.05)                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TIC*^                | %w/w (±0.05)                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IC Classification*^  | -                                                                     | Trace inhibited oil                                                                                                                                                                                                                                                                                                                                                                                       | Inhibited oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trace inhibited oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Silicone Content*^   | PPM                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Particles*^          | >4µm                                                                  | 600                                                                                                                                                                                                                                                                                                                                                                                                       | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Particles*^          | >6µm                                                                  | 52                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Particles*^          | >21µm                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                        | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Particles*^          | >38µm                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Particles*^          | >70µm                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ISO Code*^           | -                                                                     | 15/12/8                                                                                                                                                                                                                                                                                                                                                                                                   | 16/13/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20/15/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cleanliness Code*^   | -                                                                     | Good                                                                                                                                                                                                                                                                                                                                                                                                      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | ts (cont.)                                                            | ts (cont.) Sample Date Analysis Date Report Date Temp °C * Laboratory Sample ID  t denotes MU Paper D.P.*^ PCB* PPM (±1) Specific Gravity* g/ml Resistivity @ 100°C* Q-cm (±7.5) Resistivity @ 100°C* Q-cm (±7.5) Resistivity @ 100°C* Q-cm (±7.5) IC Classification*^ IC Classification*A IC Classification*A PPM Particles*A >4µm Particles*A >6µm Particles*A >6µm Particles*A >21µm Particles*A >38µm | ts (cont.)SampleIs (cont.)Sample Date01/Nov/2020Analysis Date04/Nov/2020Report Date04/Nov/2020Temp °C *35LaboratoryTxMonitorLaboratoryTxMonitorSample IDTX0003Paper D.P.*^-Specific Gravityg/mlSpecific Gravity*g/mlSpecific Gravity*0.cm (±7.5)Resistivity @ 100°C* $\Omega$ -cm (±7.5)DBPC*^%w/w (±0.05)MW(±0.05)0.05IC Classification*^-Trace inhibited<br>oil0.05Silicone Content*^PPMParticles*^>4µm600Particles*^Particles*^>21µmISO Code*^-ISO Code*^-ISO Code*^-Good | Sample Identification: L         Sample Cont.)       Sample Identification: L         Sample Date       01/Nov/2020       24/Feb/2015         Analysis Date       04/Nov/2020       04/Mar/2015         Report Date       04/Nov/2020       04/Mar/2015         Image: Laboratory       TxMonitor       TxMonitor         Image: Laboratory       TxMonitor       TxMonitor         Sample ID       TX003       TX002 $\pm$ denotes MU       Sample ID       TX003       TX002         Paper D.P.*^       -       350       900         PCB*       PPM (±1)       <1 | Sample Identification: Latest sample tal           Sample Date         01/Nov/2020         24/Feb/2015         23/Jan/2011           Analysis Date         04/Nov/2020         28/Feb/2015         27/Jan/2011           Report Date         04/Nov/2020         04/Mar/2015         03/Feb/2011           Temp °C *         35         25         31           Laboratory         TxMonitor         TxMonitor         TxMonitor           Sample ID         TX003         TX002         TX001           Paper D.P.*^         -         350         900         875           PGB*         PPM (±1)         <1 | Sample Identification: Latest sample taken by TxMonito         Sample Date       01/Nov/2020       24/Feb/2015       23/Jan/2011         Analysis Date       04/Nov/2020       28/Feb/2015       27/Jan/2011         Report Date       04/Nov/2020       04/Mar/2015       03/Feb/2011         Temp *C *       35       25       31         Laboratory       TxMonitor       TxMonitor       TxMonitor         Sample ID       TX0003       TX002       TX0001         * denotes MU       Sample ID       TX0003       TX002       TX0001         * denotes MU       Sample ID       TX003       TX002       TX0001         PBe*       PPM (±1)       <1 |

 $({}^{\star})$  Tests marked with this asterisk are not part of the scope of NATA accreditation.

(^) Tests marked with this symbol are performed by a NATA accredited third-party.

N/A Not Applicable



Report No.: OLXX03

TXMONITOR **Oil Analysis Report** 

Date: 04/Nov/2020

Client: Demo Company - All Modules

### Corrosive Sulphur per ASTM D1275B\* (This section is not part of the scope of NATA accreditation)

| Details                               | Class         | Description                                                                       | Photo |
|---------------------------------------|---------------|-----------------------------------------------------------------------------------|-------|
| Sample ID: TX0003<br>Date: 1/11/2020  | Non Corrosive | 1a - Slight Tarnish Light<br>Orange, almost the same<br>as freshly polished strip |       |
| Sample ID: TX002<br>Date: 24/02/2015  | Corrosive     | 4c - Corrosion Glossy or<br>Jet Black                                             |       |
| Sample ID: TX0001<br>Date: 23/01/2011 | Non Corrosive | 1a - Slight Tarnish Light<br>Orange, almost the same<br>as freshly polished strip |       |

# **Oil Analysis Report**

Report No.: OLXX03

Date: 04/Nov/2020

2020 C

Client: Demo Company - All Modules

Corrosive Sulphur per IEC 62535\* (This section is not part of the scope of NATA accreditation)

| Details                               | Class                    | Paper Description   | Copper Description                                                                                 | Photo |
|---------------------------------------|--------------------------|---------------------|----------------------------------------------------------------------------------------------------|-------|
| Sample ID: TX0003<br>Date: 1/11/2020  | Non Corrosive            | No deposits visible | 1a - Slight Tarnish<br>Light Orange, almost<br>the same as freshly<br>polished strip               |       |
| Sample ID: TX002<br>Date: 24/02/2015  | Non Corrosive            | No deposits visible | 4a - Corrosion<br>Transparent Black,<br>Dark Gray or Brown<br>with Peacock Green<br>barely showing |       |
| Sample ID: TX0001<br>Date: 23/01/2011 | Potentially<br>Corrosive | No deposits visible | 4b - Corrosion<br>Graphite or lusterless<br>Black                                                  |       |

|                                           | Oil Analysis Report         |                             |                                    |  |  |  |  |
|-------------------------------------------|-----------------------------|-----------------------------|------------------------------------|--|--|--|--|
| TXMONITOR<br>A member of NM Group Hadings | Report No.: OLXX0           | 03 Date: 04/Nov/2020        | Client: Demo Company - All Modules |  |  |  |  |
| Corrosive Su                              | llphur per DIN 51353* (     | This section is not part of | the scope of NATA accreditation)   |  |  |  |  |
|                                           | Details                     | Class                       | Photo                              |  |  |  |  |
| Sample<br>Date                            | e ID: TX0003<br>: 1/11/2020 | Absent                      |                                    |  |  |  |  |
| Samp<br>Date:                             | le ID: TX002<br>24/02/2015  | Present                     |                                    |  |  |  |  |
| Sample<br>Date:                           | e ID: TX0001<br>23/01/2011  | Absent                      |                                    |  |  |  |  |



TxMONITOR® - FIRST IN INDEPENDENT TRANSFORMER MANAGEMENT Unit 2, 15 Hector Street (West), Osborne Park, WA, 6916. Tel: 1300 819 454



TxMONITOR® - FIRST IN INDEPENDENT TRANSFORMER MANAGEMENT Unit 2, 15 Hector Street (West), Osborne Park, WA, 6916. Tel: 1300 819 454 Report No.: OLXX03

## **Oil Analysis Report**

Date: 04/Nov/2020 Clier

Client: Demo Company - All Modules

Duval's Triangles DGA Interpretation (This section is not part of the scope of NATA accreditation) [from IEEE (C57-104)]





#### Triangle 1

Classical Triangle for Mineral Oils

#### **Triangle 4**

Low Temperature Faults in Mineral Oils. This triangle is used for a more precise diagnosis of faults identified as low temperature (PD, T1 or T2) by Triangle 1. Do not use for faults D1, D2 or T3.



#### Triangle 5

Low Temperature Faults in Mineral Oils. This triangle is used for a more precise diagnosis of faults identified as low temperature (PD, T1 or T2) by Triangle 1. Do not use for faults D1 or D2.

| Fault Code | Description                     |
|------------|---------------------------------|
| PD         | Partial Discharge               |
| D1         | Discharges of Low Energy        |
| D2         | Discharges of High Energy       |
| T1         | Thermal Fault (< 300°C)         |
| T2         | Thermal Fault (300 - 700°C)     |
| Т3         | Thermal Fault (> 700°C)         |
| S          | Stray Gassing of Oil (< 200°C)  |
| 0          | Overheating (< 250°C)           |
| С          | Possible Carbonisation of Paper |

| <b>Ixm</b>                                                                            | Oil Analysis Report                     |               |                          |           |                                                |                              |          |
|---------------------------------------------------------------------------------------|-----------------------------------------|---------------|--------------------------|-----------|------------------------------------------------|------------------------------|----------|
| A member of MM Group Holdings                                                         | Report No.: OLXX03 Date: 04             |               | /Nov/2020 Client: Demo C |           | o Company - All Modules                        |                              |          |
| External Subcontractors (This section is not part of the scope of NATA accreditation) |                                         |               |                          |           |                                                |                              |          |
| Test                                                                                  | External Provider Accreditation Address |               |                          |           |                                                |                              |          |
| Particle Count                                                                        | ticle Count SGS Australia               |               | NATA: 15506              |           | 28 Reid Rd., Perth Airport, WA 6105            |                              |          |
| Specific Gravity                                                                      | vity Powerlink Queensland NATA:         |               |                          | NATA: 134 | 01                                             | 33 Harold Street Virginia, 0 | QLD 4014 |
| Degree of Polymerization Ventia                                                       |                                         |               | IANZ: 4253               |           | Gridco Rd., Gate 2, Otara, Otahuhu<br>1640, NZ |                              |          |
| Inhibitor Conte<br>(ASTM D2668)                                                       | nt - DBPC                               | SGS Australia |                          | NATA: 155 | 06                                             | 28 Reid Rd., Perth Airport,  | WA 6105  |

This report shall not be reproduced except in full. End of Report